Discrete mechanics and variational integrators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete mechanics and variational integrators

This paper gives a review of integration algorithms for finite dimensional mechanical systems that are based on discrete variational principles. The variational technique gives a unified treatment of many symplectic schemes, including those of higher order, as well as a natural treatment of the discrete Noether theorem. The approach also allows us to include forces, dissipation and constraints ...

متن کامل

Discrete Hamiltonian variational integrators

We derive a variational characterization of the exact discrete Hamiltonian, which is a Type II generating function for the exact flow of a Hamiltonian system, by considering a Legendre transformation of Jacobi’s solution of the Hamilton–Jacobi equation. This provides an exact correspondence between continuous and discrete Hamiltonian mechanics, which arise from the continuousand discrete-time H...

متن کامل

Nonsmooth Lagrangian Mechanics and Variational Collision Integrators

Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for collisions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum conservation theorem. Discretizations of this nonsmooth mechanics are developed by using the methodology o...

متن کامل

Discrete variational integrators and optimal control theory

A geometric derivation of numerical integrators for optimal control problems is proposed. It is based in the classical technique of generating functions adapted to the special features of optimal control problems.

متن کامل

Discrete variational Hamiltonian mechanics

The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Numerica

سال: 2001

ISSN: 0962-4929,1474-0508

DOI: 10.1017/s096249290100006x